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This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction
project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most
typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal
with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are
subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-
based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle
swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule
activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are
presented to demonstrate the practicality and efficiency of the proposed model and optimization method.

1. Introduction

In scheduling problem, the resource-constrained project
scheduling problem (RCPSP) is a classical well-known prob-
lem where the activities of a project must be scheduled to
minimize its project duration under the presence of prece-
dence and resource constraints. As a special extension of
the RCPSP, the multimode resource-constrained project
scheduling problem (MRCPSP) has emerged and has been
addressed by many researchers [1–4], where each activity can
be executed in one of several modes representing a relation-
ship between the resource requirements of the activity and
its duration [5]. Within the classical MRCPSP, most research
considers project management in terms of a single project,
but due to the complexity and natural diversification of a large
scale project, there is growing interest in the multimode
resource-constrained multiple project scheduling problem
(MRCMPSP). While many studies [6–8] have made a signif-
icant contribution to multiple project scheduling, they have

not considered multimode selection, nor discussed its appli-
cation to large scale hydropower construction projects.
Project cost and time are crucial aspects of construction
project management and have received significant attention
[9, 10]. As another typical focus in project management,
project quality needs to be taken into account when solving
the MRCMPSP.With these issues in mind, this paper focuses
on a time/cost/quality trade-off (TCQT) optimization for
the MRCMPSP, that is, minimizing the weighted project
makespan and project cost and maximizing project quality
under the presence of precedence and resource constraints in
multiple parallel projects with multimode for each activity.

In practice, the MRCMPSP is often complex with inev-
itably encountering uncertainty because of unforeseen factors
such as the changing weather, labor inefficiency, changing
markets, and construction technology. Though previous
researches [11–14] have successfully used probability theory
to address the uncertainties in duration and cost when solv-
ing project scheduling problem, sometimes the probability
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distributions for uncertain parameters may be unknown or
just partially known because of a lack of statistical data. In this
case, fuzzy set theory may be more appropriate than random
variables to describe uncertain parameters. First proposed by
Zadeh [15] and consequently developed by researchers such
as Dubois and Prade [16], fuzzy theory has been a useful
tool in dealing with ambiguous information [17, 18]. Prade
[19] first applied fuzzy set theory to the project scheduling
problem and from then on many papers [20–22] have been
devoted to anRCPSPunder a fuzzy environment.While these
studies have significantly improved the uncertainty in the
RCPSP, they are incapable of reflecting hybrid uncertainty
where fuzziness and randomness coexist. For MRCMPSP in
large scale construction projects, imprecision and complexity
are usually hybrid uncertain and cannot be dealt with using
simple fuzzy logic or random logic. In this case, fuzzy random
variables, introduced by Kwakernaak [23, 24] and Kruse
and Meyer [25], can be employed because they are able to
deal with the two types of uncertainty simultaneously. This
approach has been recommended by many scholars and
encouraged further research into uncertain events [26–28].
With these studies in mind, fuzzy random uncertainty is
adopted in this paper to describe the hybrid uncertain envi-
ronment for MRCMPSP in large scale construction project.

With the MRCMPSP being intrinsically difficult and the
model being nonlinear, nonconvex, and nondifferentiable,
traditional exact scheduling methods, such as PERT (pro-
gram evaluation and review technique) and CPM (critical
path method), are not suitable for such scheduling problems;
see Brucker et al. [29], Potts and Kovalyov [30], and Detti
[31]. Thus, effort has been made to develop effective heuristic
algorithms to solve the RCPSP, such as genetic algorithms
[32, 33], simulated annealing [3], particle swarmoptimization
(PSO) [34], and other algorithms [4, 35, 36]. Jarboui et al. [37]
put forward a combinatorial particle swarm optimization for
solving MRCPSP; the computational analyses in Zhang et al.
[34] showed that the PSO-based approach for the RCPSP was
more efficient than the GA approach due to its features, such
as the one-way experience sharing mechanism during the
PSO search. Existing publications indicate that the PSO
method has comparable or even superior performance when
solving many NP-hard problems and has a fast and stable
convergence [38], so, particle swarm optimization, inspired
by the social behaviors of animals like fish schooling and bird
flocking and proposed for optimization [39], is adopted in
this study to develop a combinatorial-priority-based hybrid
PSO (CP-based HPSO) algorithm to solve the MRCMPSP,
where the combinatorial PSO and priority-based PSO are
designed to assign modes to activities and to schedule activi-
ties, respectively.

In brief, the following techniques are used in this paper.
First, the scheduling problem in project management takes
multiple modes for each activity, multiple project scheduling,
and hybrid uncertainty environment into consideration com-
prehensively. Second, as the iron triangle inextricably linked
with measuring the success of project management, cost,
time, and quality are proposed as the optimal control criteria
in this paper. So, a time/cost/quality trade-off optimal control
model is established to solve the MRCMPSP under a fuzzy

random environment in project management. Another tech-
nique used here is the CP-based HPSO, which was developed
based on the particular nature of the MRCMPSP and the
standard PSO. The final contribution of this paper is to put
forward a practical application. A large scale hydropower
construction project in the southwest region of China is used
to illustrate the maneuverability, scientific advanced nature,
and the effectiveness of the proposedmodel and optimization
method.

The remainder of this paper is organized as follows:
Section 2 describes the key problem statement for the
MRCMPSP. A multiobjective optimization model for
MRCMPSP under a fuzzy random environment is then
formulated in Section 3. In Section 4, a multiobjective CP-
based HPSO algorithm is proposed to solve the model. In
Section 5, a practical case is used to demonstrate the pra-
cticality of themodelingmethod and the efficacy of the devel-
oped algorithm. Finally, concluding remarks are given in
Section 6.

2. Key Problem Statement

2.1. Problem Description. As the key problem in project
management, project scheduling exists in all kinds of reality
problems. It represents the conversion of project goals into
an achievable methodology for their completion; it creates a
timetable and reveals the network logic that relates project
activities to each other in a coherent fashion. With more
and more complex project management issues, RCPSP and
MRCPSP have been proposed and well applied in terms of
a single project. The project scheduling problem considered
in this paper is from a large scale hydropower construction
project in the southwest region of China, in which the main
project comprises three parallel projects (i.e., a river diversion
construction project, a river dam construction project, and a
water power generation system construction project) which
have no impact on each other, but each project has many
activities with precedence relationships and shared resources.
With these issues inmind, this paper focuses on amultimode
resource-constrained multiple project scheduling problem
(MRCMPSP), which contains mode selection problem and
activities scheduling problem for multiple projects. The
MRCMPSP considered adheres to the following assumptions,
the details of which are in Figure 1.

(1) The construction project considered in this paper
consists of 𝑛 parallel projects, and two dummy
projects (i.e., 𝑆 and 𝐹) are introduced to denote the
start and the completion of the construction project
so are not allocated any costs or processing time.
Similarly, each project (i.e., 𝑖 ∈ 𝑁 = {1, 2, . . . , 𝑛})
consists of 𝑛

𝑖
activities (i.e., 𝑗 ∈ 𝑁

𝑖
= {1, 2, . . . , 𝑛

𝑖
}) and

two dummy activities (i.e., 𝑆
𝑖
and 𝐹

𝑖
) which represent

the initial and final activities.
(2) Precedence relationships are the finish-start with a

time lag of zero, which means that each activity (i.e.,
(𝑖, 𝑗) ∈ 𝐴) can be started if and only if all of its
predecessors (i.e., 𝑃

𝑖𝑗
) have been completed. There is

no additional time allocated to activity switching. In
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Figure 1: Problem description for MRCMPSP.

addition, when an activity begins, it cannot be inter-
rupted.

(3) Each activity (𝑖, 𝑗) must be performed in only one
of 𝑚

𝑖𝑗
possible modes, with each activity mode (i.e.,

𝑚 ∈ 𝑀
𝑖𝑗
= {1, 2, . . . , 𝑚

𝑖𝑗
}) possibly having different

processing times, different resource requirements,
and different quality indexes. Mode switching is not
allowed when an activity is being executed.

(4) The shared resources that activities require can be
divided into two types, renewable resources (i.e., 𝑟 ∈
𝑅) which are limited period by period, such as man-
power and equipment, and nonrenewable resources
(i.e., 𝑘 ∈ 𝐾) which are limited for the entire project,
such as building materials.

(5) The interrelationship among activities is executed in
a certain order using an activity-on-node (AON) rep-
resentation, in which the node represents an activity
and path arrows demonstrate the logical sequencing
from node to node through the network.

(6) The starting time of each project is dependent upon
the project’s priorities and the characteristics of the
first activity set in each project and is also dependent
upon an unlimited number of other reasons.

2.2. Motivation for Employing Fuzzy Random Variables in
the MRCMPSP. The need to address uncertainty in project
management is widely recognized, as uncertainties exist in
a variety of system components. As a result, the inherent
complexity and stochastic uncertainty existing in real-world
RCPSP decision making processes have essentially placed

them beyond conventional deterministic optimizationmeth-
ods. Here is an example to illustrate the uncertainty.

Activity Duration. With the complexity of uncertainty fac-
tors, such as the changing weather, equipment properties,
labor efficiency, materials supply, and coordination problems
among stakeholders, activity duration is a typical uncertain
variable. Van de Vonder et al. [11], Herroelen and Leus [12],
and Bidot et al. [13] considered the project scheduling with
stochastic activity durations, Choi et al. [14] proposed a novel
way of addressing the uncertainties in durations and costs.
However, sometimes random variables cannot adequately
describe activity durations because probability distributions
for some activity durations may be unknown or just partially
known due to the lack of statistical data. Pinto [40] proposed
that there are a number of alternative ways to estimate
durations in project management, including past experience,
expert opinion, and mathematical derivation, and the typical
expression is within the most optimistic, the most likely,
and the most pessimistic duration estimates for each activity,
which gives rise to the fuzzy set theory to describe the uncer-
tainty of activity duration. Subsequently, Xu et al. [33] used
fuzzy number to denote activity duration and Xu and Zhang
[28] used fuzzy random variable to denote the due date of
the project. With the complexity of uncertainty factors and
uniqueness of MRCMPSP in a new large scale construction
project, activity duration is flexible or imprecise in nature,
data of which were collected from different experienced engi-
neers (i.e., 𝑞 = 1, 2, . . . , 𝐸, where 𝑞 is the index of engineers),
with each being an interval (i.e., [𝑙

𝑞
, 𝑟

𝑞
]) with the highest

possible value (i.e., 𝑚
𝑞
), such that “the duration of upstream

cofferdam is between 1360 and 1570 hour, and the most
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possible value is 1450 hour”. Since different engineers have
different views on activity duration, it is necessary to first
determine the minimum duration (i.e., [𝜉]

𝐿
) and the maxi-

mum duration (i.e., [𝜉]
𝑅
) of all collected data, respectively.

Then the maximum likelihood method is used to deal with
all the most possible values and to find whether they approx-
imately follow a normal distribution (i.e., 𝑁(𝜇, 𝜂2)), which
is derived by that the most possible value of the activity
duration can be represented using a normal distribution [40].
Therefore the duration of each activity is characterized as
a triangular fuzzy random variable (i.e., ([𝜉]

𝐿
, 𝜑(𝜔), [𝜉]

𝑅
),

where 𝜑(𝜔) ∼ 𝑁(𝜇, 𝜂2)).
Similarly, due to a lack of determined data, environmental

variations, engineering technology advancements, engineer’s
different experiences, and other unforeseen factors, fuzzy
random variables are employed to describe the uncertainty of
unit costs, quality indexes, and the resources required [28] in
the MRCMPSP.Therefore, there is a strong motivation to use
a fuzzy random environment for theMRCMPSP discussed in
this paper.

2.3. Description for the MRCMPSP under a Fuzzy Random
Environment. Project scheduling problem in large scale con-
struction projects is a crucial task and must be dealt with
urgently because of high costs, long project duration, and
other important reasons; the MRCMPSP in this paper con-
sists in scheduling activities and activity-mode combinations
under the presence of precedence and resource constraints.
With the complexity of uncertainty factors and uniqueness
of MRCMPSP in a new large scale construction project, it is
very suitable and necessary to use fuzzy random environment
to describe the hybrid uncertain construction environment.
For instance, when each activity is scheduled and executed in
one mode, renewable resources and nonrenewable resources
are required, the quantity of each is a fuzzy random variable;
eachmode for one activity possibly needs different quantity of
resources. As the most typical goals in project management,
project time, cost, and quality have received significant atten-
tion [41, 42] and should be taken into account synchronously
when solving theMRCMPSP in this paper.Thus, the purpose
of this paper is to ensure the completion of a large scale
construction project with minimum possible project time
and cost and a maximum possible project quality when
solving the MRCMPSP under a fuzzy random environment.
This leads to the following modelling.

3. Modelling

TheMRCMPSPdiscussed in this paper consists in scheduling
project activities and activity-mode combinations to achieve
objectives under the presence of precedence and resource
constraints. In this section, a time/cost/quality trade-off
(TCQT) optimization model for the MRCMPSP under a
fuzzy random environment is constructed, and its corre-
sponding mathematical description is presented as follows
using the following notation.

Index and Sets

𝑖: Project index, 𝑖 = 1, 2, , . . . , 𝑛 ∈ 𝑁
𝑗: Activity index in project 𝑖, 𝑗 = 1, 2, . . . , 𝑛

𝑖
∈ 𝑁

𝑖

(𝑖, 𝑗): Activity index for all projects, (𝑖, 𝑗) ∈ 𝐴
𝑘: Nonrenewable resource type index, 𝑘 ∈ 𝐾
𝑟: Renewable resources type index, 𝑟 ∈ 𝑅
𝑚: Mode index, 𝑚 = 1, 2, . . . , 𝑚

𝑖𝑗
∈ 𝑀

𝑖𝑗
(is the

number of possible modes of activity (𝑖, 𝑗))
𝑡: Period index
𝐼
𝑡
: Set of all ongoing activities at period 𝑡
𝑃
𝑖𝑗
: Set of all predecessors in project 𝑖 of activity (𝑖, 𝑗),

V ∈ 𝑃
𝑖𝑗
.

Certain Parameters

𝐶
𝑖𝑗
: Fixed cost of activity (𝑖, 𝑗) with normal duration,

(𝑖, 𝑗) ∈ 𝐴

𝑇: The upper bound of the project completion time,
𝑡 ∈ {1, 2, . . . , 𝑇}

𝐵: Available total budget
𝑅
𝜐

𝑘
: Total amount of available nonrenewable resource

𝑘, 𝑘 ∈ 𝐾
𝑅
𝜌

𝑟𝑡
: Capacity of renewable resource 𝑘 available at

period 𝑡, 𝑟 ∈ 𝑅, 𝑡 ∈ {1, 2, . . . , 𝑇}
𝐸𝑉

𝑖𝑗
: Earned value of activity (𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐴

𝑤
𝑖
: Weight of project 𝑖 compared to other projects in

the whole project.

Uncertain Parameters
̃
𝑑
𝑖𝑗
: Normal duration of activity (𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐴

̃
𝑑

𝑚

𝑖𝑗
: Crashed duration of activity (𝑖, 𝑗) executed in

mode𝑚, (𝑖, 𝑗) ∈ 𝐴,𝑚 ∈ 𝑀
𝑖𝑗

̃
𝑐
𝑖𝑗
: Unit variable cost of activity (𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐴

̃
𝑘
𝑖𝑗
: Unit crashing cost of activity (𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐴

̃
𝑞

𝑚

𝑖𝑗
: Quality index of activity (𝑖, 𝑗) executed in mode

𝑚, (𝑖, 𝑗) ∈ 𝐴,𝑚 ∈ 𝑀
𝑖𝑗

̃
𝑟

𝑚

𝑖𝑗𝑘
: Units of nonrenewable resource 𝑘 required by

activity (𝑖, 𝑗) executed in mode 𝑚, (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾,
𝑚 ∈ 𝑀

𝑖𝑗

̃
𝑟

𝑚

𝑖𝑗𝑟
: Per period usage of renewable resource 𝑟 required

by activity (𝑖, 𝑗) executed in mode𝑚, (𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅,
𝑚 ∈ 𝑀

𝑖𝑗
.

Variables

𝑆
𝑖𝑗
: Start time of activity (𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐴

𝐹
𝑖𝑗
: Finish time of activity (𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐴

𝑥
𝑚

𝑖𝑗
= {

1, if activity (𝑖,𝑗) is being executed in mode 𝑚,

0, otherwise,

𝑦
𝑚

𝑖𝑗𝑡
= {

1, if activity (𝑖,𝑗) in mode 𝑚 is scheduled at time 𝑡,

0, otherwise.



The Scientific World Journal 5

Estimate the parameters
Collected data

Professional

Uncertain
factors

1.0

q = 1

q = 2

q = E

q

l1 m1
r1

l2 m2
r2

lE mE
rE

[𝜉]L = min(l1, l2, . . . , lE
[𝜉]R = max(r1, r2, . . . , rE
mi ∼ 𝜑(𝜔) ∼ N(𝜇, 𝜂2)

Possibility

Triangular fuzzy random variable

[𝜉]L 𝜑(𝜔) [𝜉]R x

x

Transform fuzzy random variable into
(𝛾, 𝜎) -level trapezoidal fuzzy variable
̃
𝜉

𝜑𝜎(x) 𝜑(𝜔)
1.0

1.0

𝛾

x
[𝜉]L 𝜑L𝜎 𝜑R𝜎 [𝜉]R

x
[𝜉]L [𝜉]R

𝜇
𝜉(𝛾,𝜎)

(𝛾,𝜎) =𝜉

𝜉𝜉

𝜉

𝜉

𝜉

𝜉

1.0

𝜇

𝛾1

x

f𝜑(x)
Sup f𝜑(x) f𝜑(x) =

𝜑L𝜎 = inf f−1
𝜑 (𝜎) 𝜑R𝜎 = supf−1

𝜑 (𝜎)

oo

o

o
o

𝜎

EMe
=

1 − 𝜆

2
[𝜉]L+ +

𝜆

2
+ [𝜉]R

experience

)
)

𝜇

→ [𝜉]L, 𝜉, 𝜉 [𝜉]R

�̃�(𝛾,𝜎)

[𝜉]L, 𝜑(𝜔), [𝜉]R 𝜑(𝜔) ∼ N(𝜇, 𝜂2)

[ ] ( )

( )
( )

( )

e−(x−𝜇)
2/2𝜎21

√2𝜋𝜎

Figure 2: Transformation method of the fuzzy random parameters.

3.1. Dealing with Fuzzy RandomVariables. The fuzzy random
variables in this study ensure a greater data accuracy butmake
the MRCMPSP significantly more difficult to solve. One
strategy is to employ a transformation method to convert the
fuzzy random variables into real numbers; thus, the hybrid
crisp approach put forward by Xu et al. [43] first transforms
the fuzzy random parameters into (𝛾, 𝜎)-level trapezoidal
fuzzy variables, which are subsequently defuzzified using
an expected value operator with an optimistic-pessimistic
index. Without a loss of generality, denote the fuzzy random
variables as ̃𝜉 = ([𝜉]

𝐿
, 𝜑(𝜔), [𝜉]

𝑅
); here 𝜑(𝜔) ∼ 𝑁(𝜇, 𝜂

2
)

with a probability density function 𝑓
𝜑
(𝑥). The procedure is

summarized as follows and the transformation process is
illustrated in Figure 2.

(1) Estimate the parameters [𝜉]
𝐿
, [𝜉]

𝑅
, 𝜇, and 𝜂2 from

the collected data and professional experience using
statistical methods. Specifically, the minimum value
of all 𝑙

𝑞
and the maximal value of all 𝑟

𝑞
for each

parameter in the survey data were selected as [𝜉]
𝐿
and

[𝜉]
𝑅
, respectively. 𝜇 and 𝜂2 can be estimated using the

maximum likelihood method and justified by a chi-
square goodness-of-fit test.

(2) Obtain the possibility level of the fuzzy variable (i.e.,
𝛾) and the probability level of the random variable
(i.e., 𝜎), where 𝑟 ∈ [([𝜉]

𝑅
− [𝜉]

𝐿
)/([𝜉]

𝑅
− [𝜉]

𝐿
+ 𝜑

𝑅

𝜎
−

𝜑
𝐿

𝜎
), 1], 𝜎 ∈ [0, sup𝑓

𝜑
(𝑥)].

(3) Let 𝜑
𝜎
be the 𝜎-cut of the random variable 𝜑(𝜔); that

is, 𝜑
𝜎
= [𝜑

𝐿

𝜎
, 𝜑

𝑅

𝜎
] = {𝑥 ∈ 𝑅 | 𝑓

𝜑
(𝑥) ≥ 𝜎}, where

𝜑
𝐿

𝜎
= inf{𝑥 ∈ 𝑅 | 𝑓

𝜑
(𝑥) ≥ 𝜎} = 𝜇 − √−2𝜂

2 ln(√2𝜋𝜎𝜂)
and 𝜑𝑅

𝜎
= sup{𝑥 ∈ 𝑅 | 𝑓

𝜑
(𝑥) ≥ 𝜎} = 𝜇 +

√−2𝜂
2 ln(√2𝜋𝜎𝜂).

(4) Transform the fuzzy random variable into the (𝛾, 𝜎)-
level trapezoidal fuzzy variable ̃𝜉

(𝛾,𝜎)
by equation ̃𝜉 →

̃
𝜉
(𝛾,𝜎)

= ([𝜉]
𝐿
, 𝜉, 𝜉, [𝜉]

𝑅
), where 𝜉 = [𝜉]

𝑅
− 𝛾([𝜉]

𝑅
− 𝜑

𝐿

𝜎
)

and 𝜉 = [𝜉]
𝐿
+ 𝛾(𝜑

𝑅

𝜎
− [𝜉]

𝐿
).

(5) Defuzzify the (𝛾, 𝜎)-level trapezoidal fuzzy variables
using an expected value operator with an optimistic-
pessimistic index 𝜆 as follows:

𝐸
𝑀𝑒
[
̃
𝜉
(𝛾,𝜎)

] =

(1 − 𝜆)

2

([𝜉]
𝐿
+ 𝜉) +

𝜆

2

(𝜉 + [𝜉]
𝑅
) . (1)

In this paper, all probability levels and possibility levels
are denoted as 𝜎 and 𝛾, respectively.

3.2. TCQT Optimization Model Objective Functions for the
MRCMPSP

Weighted Project Makespan. The activities in project 𝑖 are
well organized and numbered 0 to 𝑛

𝑖
+ 1, where the 0th

and (𝑛
𝑖
+ 1)th activities are dummy activities representing

the start and end activities, respectively; then 𝑆
𝑖,0

and 𝐹
𝑖,𝑛𝑖+1

are used to represent the start and finish times of project
𝑖, respectively, so the duration of project 𝑖 is (𝐹

𝑖,𝑛𝑖+1
− 𝑆

𝑖,0
)

based on previous studies like [34]. For the whole project, the
duration is the makespan between the project start time and
project completion time, whichmeans that it is themaximum
value of all the finish times of all the independent projects,
which can be expressed as max

𝑖
𝐹
𝑖,𝑛𝑖+1

.
In a large scale project which contains many projects,

the whole project duration is not able to adequately describe
the characteristics of the whole project and each project.
Considering the different importance of each project and the
different requirements of both the whole project duration
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and the single project duration, it is strongly recommended
to mark the objective function of the weighted project
makespan. Let 𝑧

1
be the weighted project makespan, which

can be expressed as follows:

𝑧
1
= 𝜆

1
×max

𝑖

𝐹
𝑖,𝑛𝑖+1

+ 𝜆
2
×

𝑛

∑

𝑖=1

(𝜔
𝑖
× (𝐹

𝑖,𝑛𝑖+1
− 𝑆

𝑖,0
)) , (2)

where 𝜆
1
and 𝜆

2
represent the weight of project duration and

the weight of single project duration time, respectively, and
𝜆
1
+ 𝜆

2
= 1, ∑𝑛

𝑖=1
𝜔
𝑖
= 1.

Project Cost. Project cost optimization is a crucial considera-
tion in large scale projectmanagement andmust be dealt with
urgently because of the high expenses, the impact on project
quality and durations, and so forth. Usually total project cost
changes occur because of changes to fixed costs, unit costs,
duration, the mode activity, and so forth. Therefore, project
managers aim to achieve the best option for the execution of
the process by minimizing the total project cost. In review of
the previous studies [33, 44], it can be derived that the total
project cost for the MRCMPSP in this paper is composed

of fixed cost (i.e., 𝐶
𝑖𝑗
), variable cost (i.e., ̃𝑐

𝑖𝑗
×
̃
𝑑

𝑚

𝑖𝑗
), and the

crashing cost (i.e., ̃𝑘
𝑖𝑗
× (
̃
𝑑
𝑖𝑗
−
̃
𝑑

𝑚

𝑖𝑗
)) of each activity. Here, the

fuzzy random variables (i.e.,̃𝑐
𝑖𝑗
, ̃𝑘

𝑖𝑗
, ̃𝑑

𝑚

𝑖𝑗
, and ̃𝑑

𝑖𝑗
) are converted

into real numbers (i.e.,𝐸𝑀𝑒
[𝑐

𝑖𝑗(𝛾,𝜎)
],𝐸𝑀𝑒

[
̃
𝑘
𝑖𝑗(𝛾,𝜎)

],𝐸𝑀𝑒
[
̃
𝑑
𝑚

𝑖𝑗(𝛾,𝜎)
],

and𝐸𝑀𝑒
[
̃
𝑑
𝑖𝑗(𝛾,𝜎)

]) using the above approach. Let 𝑧
2
be the total

project cost, which can be expressed as follows:

𝑧
2
=

𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑚𝑖𝑗

∑

𝑚=1

(𝐶
𝑖𝑗
+ 𝐸

𝑀𝑒
[𝑐

𝑖𝑗(𝛾,𝜎)
] 𝐸

𝑀𝑒
[
̃
𝑑
𝑚

𝑖𝑗(𝛾,𝜎)
] 𝑥

𝑚

𝑖𝑗

+ 𝐸
𝑀𝑒
[
̃
𝑘
𝑖𝑗(𝛾,𝜎)

] 𝐸
𝑀𝑒
[
̃
𝑑
𝑖𝑗(𝛾,𝜎)

−
̃
𝑑
𝑚

𝑖𝑗(𝛾,𝜎)
] 𝑥

𝑚

𝑖𝑗
) .

(3)
Project Quality. Besides consideration of the resource con-
straints, project duration, and project management cost,
project quality is another important objective to optimize. In
order to realize the quantization of the quality index, let𝐸𝑄𝑉

𝑖𝑗

express the earned quality value of activity (𝑖, 𝑗), which can be
obtained using the following formula: 𝐸𝑄𝑉

𝑖𝑗
= ∑

𝑚𝑖𝑗

𝑚=1
𝐸𝑉

𝑖𝑗
×

̃
𝑞

𝑚

𝑖𝑗
𝑥
𝑚

𝑖𝑗
. Considering the differing importance of each project

and the different requirements of each project, a weighted
project quality is strongly recommended to mark the total
quality of the whole project. Here, the fuzzy random variable
(i.e., ̃𝑞

𝑚

𝑖𝑗
) is converted into a real number (i.e., 𝐸𝑀𝑒

[𝑞
𝑖𝑗(𝛾,𝜎)

])
using the above approach. Let 𝑧

3
be the weighted project

quality, which can be expressed as follows:

𝑧
3
=

𝑛

∑

𝑖=1

𝜔
𝑖

1

∑
𝑛𝑖

𝑗=1
𝐸𝑉

𝑖𝑗

×

𝑛𝑖

∑

𝑗=1

𝐸𝑄𝑉
𝑖𝑗

=

𝑛

∑

𝑖=1

𝜔
𝑖

1

∑
𝑛𝑖

𝑗=1
𝐸𝑉

𝑖𝑗

×

𝑛𝑖

∑

𝑗=1

𝑚𝑖𝑗

∑

𝑚=1

𝐸𝑉
𝑖𝑗
× 𝐸

𝑀𝑒
[𝑞

𝑚

𝑖𝑗(𝛾,𝜎)
] 𝑥

𝑚

𝑖𝑗
.

(4)

3.3. TCQT Optimization Model Constraints for MRCMPSP

Mode Uniqueness Constraint. Each activity must be per-
formed in only onemode, andmode switching is not allowed
when an activity is being executed, which can be ensured
using the following constraint set:

𝑚𝑖𝑗

∑

𝑚=1

𝑥
𝑚

𝑖𝑗
= 1, ∀ (𝑖, 𝑗) ∈ 𝐴. (5)

Budget and Completion Time Constraints. In a large scale
project, it is extremely important to draw up the construction
contract with deterministic limits for total budget and project
duration before any activities are executed; then the following
constraints are made:

𝑧
2
≤ 𝐵,

max
𝑖

𝐹
𝑖,𝑛𝑖+1

≤ 𝑇, ∀𝑖 ∈ 𝑁, 𝑛
𝑖
∈ 𝑁

𝑖
.

(6)

Time Constraints. Constraint sets (7) compute the start time
for each activity, which is obtained from the decision vari-
ables and the mode selection, where𝑀 is an infinite number
which ensures that the start time of each activity is no greater
than the time for which it is scheduled. Each activity (𝑖, 𝑗)
is executed only once, and the total number of periods that
it is executed in is equal to its duration when executed in
mode 𝑚. In addition, its corresponding finish time 𝐹

𝑖𝑗
can

be obtained using (9). Here, the fuzzy random variable ̃𝑑
𝑚

𝑖𝑗

is converted into a real number (i.e., 𝐸𝑀𝑒
[
̃
𝑑
𝑚

𝑖𝑗(𝛾,𝜎)
]) using

the above approach. With these in mind, the corresponding
constraints are listed as follows:

𝑦
𝑚

𝑖𝑗𝑡
× 𝑡 +𝑀(1 − 𝑦

𝑚

𝑖𝑗𝑡
) ≥ 𝑆

𝑖𝑗
, ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑚 ∈ 𝑀

𝑖𝑗
, (7)

𝑇

∑

𝑡=0

𝑦
𝑚

𝑖𝑗𝑡
= 𝐸

𝑀𝑒
[
̃
𝑑
𝑚

𝑖𝑗(𝛾,𝜎)
] × 𝑥

𝑚

𝑖𝑗
, ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑚 ∈ 𝑀

𝑖𝑗
, (8)

𝐹
𝑖𝑗
= 𝑆

𝑖𝑗
+

𝑚𝑖𝑗

∑

𝑚=1

𝐸
𝑀𝑒
[
̃
𝑑
𝑚

𝑖𝑗(𝛾,𝜎)
] 𝑥

𝑚

𝑖𝑗
, ∀ (𝑖, 𝑗) ∈ 𝐴. (9)

Precedence Constraint. In a project, precedence is an impor-
tant basic term ensuring arrangement rationality. With this
in mind, and from the assumptions in the key problem
statement, an activity can be started if and only if all its
predecessors have already been completed. It is important
that none of the precedence constraints are violated for all
predecessors of activity (𝑖, 𝑗) as shown in the following:

𝐹
𝑖V ≤ 𝑆𝑖𝑗, ∀V ∈ 𝑃

𝑖𝑗
, (𝑖, 𝑗) ∈ 𝐴. (10)

Resource Constraints. Renewable resources and nonrenewa-
ble resources are the two types of resource activities required.
Constraint set (11) forces the total nonrenewable resource
units utilized to be no greater than the total nonrenewable
resources available, whereas constraint set (12) forces the total
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renewable resource units utilized in every period to be no
greater than the available renewable resources for any period.
Here, the fuzzy random variables ̃𝑟

𝑚

𝑖𝑗𝑘
and ̃𝑟

𝑚

𝑖𝑗𝑟
are converted

into real numbers (i.e., 𝐸𝑀𝑒
[𝑟

𝑚

𝑖𝑗𝑘(𝛾,𝜎)
] and 𝐸𝑀𝑒

[𝑟
𝑚

𝑖𝑗𝑟(𝛾,𝜎)
]). Con-

sider

𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑚𝑖𝑗

∑

𝑚=1

𝐸
𝑀𝑒
[𝑟

𝑚

𝑖𝑗𝑘(𝛾,𝜎)
] 𝑥

𝑚

𝑖𝑗
≤ 𝑅

𝜐

𝑘
,

∀ (𝑖, 𝑗) ∈ 𝐴, 𝑚 ∈ 𝑀
𝑖𝑗
, 𝑘 ∈ 𝐾,

(11)

𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑚𝑖𝑗

∑

𝑚=1

𝐸
𝑀𝑒
[𝑟

𝑚

𝑖𝑗𝑟(𝛾,𝜎)
] 𝑦

𝑚

𝑖𝑗𝑡
≤ 𝑅

𝜌

𝑟𝑡
,

∀ (𝑖, 𝑗) ∈ 𝐼
𝑡
, 𝑚 ∈ 𝑀

𝑖𝑗
, 𝑟 ∈ 𝑅.

(12)

Logical Constraints. In order to describe the nonnegative
variables and the 0 − 1 variables in the model for a practical
situation, the following constraints are presented:

𝑆
𝑖𝑗
≥ 0, 𝐹

𝑖𝑗
> 0, ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑚 ∈ 𝑀

𝑖𝑗
,

𝑥
𝑚

𝑖𝑗
= 0 or 1, 𝑦

𝑚

𝑖𝑗𝑡
= 0 or 1, ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑚 ∈ 𝑀

𝑖𝑗
.

(13)

3.4. Model Formulation. In project management, RCPSP is
committed to a schedule of activities to minimize project
duration.As a novel extension of theRCPSP, theMRCPSPhas
emerged and has been verified.This allows for the diversity in
activity modes that exists in reality, where each activity must
be executed in only onemode which represents a relationship
between the resource requirements of the activity and its
duration. Based on the RCPSP and the MRCPSP, multimode
resource-constrained multiple project scheduling problem
(MRCMPSP) is proposed first in this paper, which takes
both multiple activity modes and multiple parallel projects
scheduling into consideration. In this optimization model,
duration, cost, and quality, as the most typical goals in
project management, are comprehensively and systematically
analyzed and the trade-off is optimized, which improves
the overall construction project efficiency. In this study,
fuzzy random uncertainty is adopted to describe the hybrid
uncertain environment forMRCMPSP,which ensures greater
data accuracy. A hybrid crisp approach is used to transform
the fuzzy random parameters into (𝛾, 𝜎)-level trapezoidal
fuzzy variables, which are subsequently defuzzified using an
expected value operator with an optimistic-pessimistic index
as shown in (1). With these in mind, an expected value model
for weighted makespan/cost/quality trade-off optimization
for the MRCMPSP under a fuzzy random environment is
established, which aims to schedule activities and assign
activity modes to achieve the objectives under the presence
of precedence and resource constraints. From the nota-
tions, objective functions, and constraints outlined above,

the multiobjective expected value model for the MRCMPSP
can be formulated in the following:

min 𝑧
1
= 𝜆

1
×max

𝑖

𝐹
𝑖,𝑛𝑖+1

+ 𝜆
2

×

𝑛

∑

𝑖=1

(𝜔
𝑖
× (𝐹

𝑖,𝑛𝑖+1
− 𝑆

𝑖,0
)) ,

min 𝑧
2
=

𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑚𝑖𝑗

∑

𝑚=1

(𝐶
𝑖𝑗
+ 𝐸

𝑀𝑒
[𝑐

𝑖𝑗(𝛾,𝜎)
] 𝐸

𝑀𝑒

× [
̃
𝑑
𝑚

𝑖𝑗(𝛾,𝜎)
] 𝑥

𝑚

𝑖𝑗

+ 𝐸
𝑀𝑒
[
̃
𝑘
𝑖𝑗(𝛾,𝜎)

] 𝐸
𝑀𝑒

× [
̃
𝑑
𝑖𝑗(𝛾,𝜎)

−
̃
𝑑
𝑚

𝑖𝑗(𝛾,𝜎)
] 𝑥

𝑚

𝑖𝑗
) ,

max 𝑧
3
=

𝑛

∑

𝑖=1

𝜔
𝑖

1

∑
𝑛𝑖

𝑗=1
𝐸𝑉

𝑖𝑗

×

𝑛𝑖

∑

𝑗=1

𝑚𝑖𝑗

∑

𝑚=1

𝐸𝑉
𝑖𝑗
× 𝐸

𝑀𝑒
[𝑞

𝑚

𝑖𝑗(𝛾,𝜎)
] 𝑥

𝑚

𝑖𝑗

s.t. 𝜆
1
+ 𝜆

2
= 1,

𝑛

∑

𝑖=1

𝑤
𝑖
= 1, 𝑖 ∈ 𝑁,

𝑚𝑖𝑗

∑

𝑚=1

𝑥
𝑚

𝑖𝑗
= 1, ∀ (𝑖, 𝑗) ∈ 𝐴,

𝑧
2
≤ 𝐵,

max
𝑖

𝐹
𝑖,𝑛𝑖+1

≤ 𝑇, ∀𝑖 ∈ 𝑁, 𝑛
𝑖
∈ 𝑁

𝑖
,

𝐹
𝑖𝑗
= 𝑆

𝑖𝑗
+

𝑚𝑖𝑗

∑

𝑚=1

𝐸
𝑀𝑒
[
̃
𝑑
𝑚

𝑖𝑗(𝛾,𝜎)
] 𝑥

𝑚

𝑖𝑗
,

∀ (𝑖, 𝑗) ∈ 𝐴,

𝑦
𝑚

𝑖𝑗𝑡
× 𝑡 +𝑀(1 − 𝑦

𝑚

𝑖𝑗𝑡
) ≥ 𝑆

𝑖𝑗
,

∀ (𝑖, 𝑗) ∈ 𝐴, 𝑚 ∈ 𝑀
𝑖𝑗
,

𝑇

∑

𝑡=0

𝑦
𝑚

𝑖𝑗𝑡
= 𝐸

𝑀𝑒
[
̃
𝑑
𝑚

𝑖𝑗(𝛾,𝜎)
] × 𝑥

𝑚

𝑖𝑗
,

∀ (𝑖, 𝑗) ∈ 𝐴, 𝑚 ∈ 𝑀
𝑖𝑗
,

𝐹
𝑖V ≤ 𝑆𝑖𝑗, ∀V ∈ 𝑃

𝑖𝑗
, (𝑖, 𝑗) ∈ 𝐴,

𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑚𝑖𝑗

∑

𝑚=1

𝐸
𝑀𝑒
[𝑟

𝑚

𝑖𝑗𝑘(𝛾,𝜎)
] 𝑥

𝑚

𝑖𝑗
≤ 𝑅

𝜐

𝑘
,

∀ (𝑖, 𝑗) ∈ 𝐴, 𝑚 ∈ 𝑀
𝑖𝑗
, 𝑘 ∈ 𝐾,
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𝑛

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑚𝑖𝑗

∑

𝑚=1

𝐸
𝑀𝑒
[𝑟

𝑚

𝑖𝑗𝑟(𝛾,𝜎)
] 𝑦

𝑚

𝑖𝑗𝑡
≤ 𝑅

𝜌

𝑟𝑡
,

∀ (𝑖, 𝑗) ∈ 𝐼
𝑡
, 𝑚 ∈ 𝑀

𝑖𝑗
, 𝑟 ∈ 𝑅,

𝑡 ∈ {1, 2, . . . , 𝑇} ,

𝑥
𝑚

𝑖𝑗
= 0 or 1, 𝑦

𝑚

𝑖𝑗𝑡
= 0 or 1,

∀ (𝑖, 𝑗) ∈ 𝐴, 𝑚 ∈ 𝑀
𝑖𝑗
,

𝑆
𝑖𝑗
≥ 0, 𝐹

𝑖𝑗
> 0, ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑚 ∈ 𝑀

𝑖𝑗
.

(14)

4. Combinatorial-Priority-Based Hybrid PSO
Algorithm for Solving the MRCMPSP

As a generalization of the classical project scheduling prob-
lem, MRCPSP belongs to the class of NP-hard optimization
problems. As shown by Potts and Kovalyov [30], Detti [31],
and Pinedo [45], exact methods are unable to find optimal
solutions for MRCPSP. In this case, several heuristic proce-
dures have been proposed to solve MRCPSP, such as genetic
algorithms as shown in [46, 47], simulated annealing algo-
rithm [3], particle swarm optimization [37], and local search
procedure [48]. Since many kinds of PSO have been tested
and verified for solving the RCPSP and MRCPSP, further-
more, based on the particular nature of our model and the
easy-to-implement software development of PSO algorithm,
the PSO is adopted in this study to develop a combinatorial-
priority-based hybrid PSO (CP-based HPSO) algorithm for
solving the MRCMPSP.

Particle swarm optimization is a population-based self-
adaptive search stochastic optimization technique proposed
by Kennedy and Eberhart [39], which was inspired by the
social behavior of animals such as fish schooling and birds
flocking to find a promising position for certain objectives in
amultidimensional space [38, 49]. Similar to the evolutionary
computation technique, the PSO maintains a population of
particles, where each particle represents a potential solution
to an optimization problem. The PSO formula is shown
below:

𝑉
𝑙 (
𝜏 + 1) = 𝑤 (𝜏)𝑉𝑙 (

𝜏) + 𝑐𝑝
𝑟
𝑝
(𝑃

𝑙
− 𝑋

𝑙 (
𝜏))

+ 𝑐
𝑔
𝑟
𝑔
(𝐺 − 𝑋

𝑙 (
𝜏)) ,

(15)

𝑋
𝑙 (
𝜏 + 1) = 𝑉𝑙 (

𝜏 + 1) + 𝑋𝑙 (
𝜏) , (16)

𝑤 (𝜏) = 𝑤 (𝑇) +

𝜏 − 𝑇

1 − 𝑇

[𝑤 (1) − 𝑤 (𝑇)] , (17)

where 𝑙 = 1, 2, . . . , 𝐿 (population size); 𝜏 = 1, 2, . . . , 𝑇 (iter-
ation limit); 𝑋

𝑙
(𝜏) = (𝑥

𝑙1
(𝜏), 𝑥

𝑙2
(𝜏), . . . , 𝑥

𝑙𝐻
(𝜏)), and 𝑉

𝑙
(𝜏) =

(V
𝑙1
(𝜏), V

𝑙2
(𝜏), . . . , V

𝑙𝐻
(𝜏)) denote the 𝐻-dimension (problem

dimension) position and velocity for the 𝑙th particle in
the 𝜏th iteration, respectively; 𝑃

𝑙
= (𝑝

𝑙1
, 𝑝

𝑙2
, . . . , 𝑝

𝑙𝐻
) and

𝐺 = (𝐺
1
, 𝐺

2
, . . . , 𝐺

𝐻
) denote the personal best position of

the 𝑙th particle encountered after 𝜏 iterations and global best,
respectively; 𝑐

𝑝
and 𝑐

𝑔
are the acceleration constants and 𝑟

𝑝

and 𝑟
𝑔
are random real numbers drawn from 𝑈(0, 1); 𝑤(𝜏),

the inertia weight used to determine the influence of the
previous velocity on the new velocity. Equation (15) is used to
calculate the particle’s new velocity, (16) is used to update the
particle moving toward a new position [50], and (17) shows
how the adaptive inertia weights vary with iterations [50].

4.1. Weight-Sum Procedure for Dealing with the Multiobjective
Factor. Based on the natural characteristics of themathemat-
ical model in (14), the aggregating approach with weighted-
sum form is used to deal with the multiobjective factor in
this paper. Only when the solution set is convex [51] can
the aggregated objective in the weighted-sum form be used
to find the optimal Pareto solutions, and the convexity of
the above mathematical model and its solution set can be
easily proved. So, in this paper, the weight-sum procedure is
adopted and the estimatedmaximal value is used to divide the
dimensions and unify the orders of magnitude in the three
objectives [33]. The basic procedure is as follows:

(1) estimate the maximal values 𝑧max
1

, 𝑧max
2

, and 𝑧max
3

of
𝑧
1
, 𝑧

2
, and 𝑧

3
, respectively;

(2) calculate and standardize the 𝑧
1
, 𝑧

2
, and 𝑧

3
as follows:

𝑧


1
=

𝑧
1

𝑧
max
1

, 𝑧


2
=

𝑧
2

𝑧
max
2

, 𝑧


3
=

𝑧
3

𝑧
max
3

, (18)

(3) the weighted-sum objective function 𝑧 = min(𝜂
1
𝑧


1
+

𝜂
2
𝑧


2
− 𝜂

3
𝑧


3
), where 𝜂

1
+ 𝜂

2
+ 𝜂

3
= 1.

The weights 𝜂
1
, 𝜂

2
, and 𝜂

3
are proposed for the weighted

project makespan, project cost, and project quality, respec-
tively, all of which have been provided by the decisionmakers
and reflect the importance of each objective from their view.
For a given individual, the fitness value function is expressed
as follows:

Fitness (𝑋
𝑙 (
𝜏)) = 𝜂1

𝑧


1
+ 𝜂

2
𝑧


2
+ 𝜂

3
𝑧


3
. (19)

4.2. Encoding Scheme and Decoding Scheme for CP-Based
HPSO. In PSO, the position of a particle is indicated by a vec-
tor which presents the solution of the investigated problem.
According to the nature of CP-based HPSO proposed in this
paper, the execution modes and the start time of all activities
are considered the problem dimensions (i.e., 2∑𝑁

𝑖=1
𝑁

𝑖
), and

other variables are treated as hidden parameters. In this CP-
based HPSO, let 𝑋1

𝑙
(𝜏) denote the execution modes; 𝑋2

𝑙
(𝜏)

denote the activity priorities which represent the activity start
times, while the placement of which reflectively corresponds
to the activity indexes. Therefore, let 𝑋

𝑙
(𝜏) = [𝑋

1

𝑙
(𝜏), 𝑋

2

𝑙
(𝜏)]

and 𝑉
𝑙
(𝜏) = [𝑉

1

𝑙
(𝜏), 𝑉

2

𝑙
(𝜏)] denote the 2𝐻-dimension

position and velocity for the 𝑙th particle in the 𝜏th iteration,
respectively. Similarly, let 𝑃

𝑙
= [𝑃

1

𝑙
, 𝑃

2

𝑙
] and 𝐺 = [𝐺

1
, 𝐺

2
]

denote the 2𝐻-dimension personal best position and global
best position, respectively, in which 𝑋1

𝑙
(𝜏), 𝑉1

𝑙
(𝜏), 𝑃1

𝑙
(𝜏), and

𝐺
1
(𝜏) are the representation in the combinatorial PSO;𝑋2

𝑙
(𝜏),
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Figure 3: Transformation procedure of the CP-based HPSO.

𝑉
2

𝑙
(𝜏), 𝑃2

𝑙
(𝜏), and𝐺2

(𝜏) are the representation in the priority-
based PSO.

With known activity priorities, there are two types of
schedule generation schemes (SGS, i.e., serial schedule gen-
eration scheme (SSGS) and parallel schedule generation
scheme (PSGS)) usually used for generating the RCPSP
schedule [52]. Where SSGS can cause a larger deviation in
the optimization results with inappropriate priority rules, the
PSGS can decrease this but has a longer scheduling time. Fur-
ther, when focusing on multiple projects, a hybrid schedule
generation scheme (HSGS) with a combination of SSGS and
PSGS is proposed in this study. The HSGS has many stages
and each stage is made up as shown in the right part of
Figure 4, wherein 𝐹

𝑛
is the set of activities which have been

completed at stage 𝑛; 𝐴
𝑛
is the set of activities which are

ongoing and have not yet been completed at stage 𝑛; 𝐸
𝑛
is the

set of activities which are going to be processed and whose

precedence activities have already been completed or are still
in 𝐸

𝑛
; and 𝑈

𝑛
is the set of all remaining activities at stage 𝑛.

4.3. Overall Procedure of CP-Based HPSO. As we can see,
the MRCMPSP consists of two different subproblems: the
assignment of modes to activities and the scheduling of
activities to achieve the objectives. Aimed at the first problem,
a combinatorial PSO proposed by Jarboui et al. [37] is
referenced while a priority-based PSO is proposed to deal
with the scheduling problem. To solve the MRCMPSP, in
accordance with the standard PSO, the combinatorial PSO
is used to initialize and update position 𝑋1

𝑙
(𝜏) and velocity

𝑉
1

𝑙
(𝜏) (𝑙 = 1, 2, . . . , 𝐿) in a novelmethod.The advantage of the

priority-based PSO is the priority representation for position
𝑋

2

𝑙
(𝜏) and a hybrid schedule generation scheme to generate

the MRCMPSP schedule with known activity priorities.
Based on the basic PSO, and utilizing the innovation and
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Figure 4: Overall procedure of the CP-based HPSO framework.

highlights of the combinatorial PSO and priority-based PSO,
the overall procedure to implement the CP-based HPSO for
the MRCMPSP is expounded as follows.

4.3.1. Initialization for CP-Based HPSO

Step 1 (initialize particles). Initialize 𝐿 particles as a swarm;
set iteration 𝜏 = 0. For 𝑙 = 1, 2, . . . , 𝐿, generate the
𝐻-dimension position of particle 𝑙 with an integer vec-
tor 𝑋1

𝑙
(0), where the value of 𝑥1

𝑙ℎ
(0) is randomly selected

from (1, 2, . . . , 𝑚
ℎ
) (combinatorial PSO); generate the 𝐻-

dimension random position 𝑋2

𝑙
(0) within [0, 1] (priority-

based PSO); generate 2𝐻-dimension random velocity 𝑉
𝑙
(0)

within [−1, 1].

Step 2. Check the feasibility.

Step 2.1. For 𝑙 = 1, 2, . . . , 𝐿, decode the particles to solutions;
if the feasibility criterion is met by all particles, then the
particles are feasible; go to Step 3. Otherwise, go to Step 2.2.

Step 2.2. It is necessary to check and adjust solutions to
avoid nonrenewable resource infeasibility. For the infeasible
nonrenewable resources, select an activity (𝑖, 𝑗) with multiple
execution modes.

Step 2.3. Select a newmode𝑚 within 1, 2, . . . , 𝑚
𝑖𝑗
for activity

(𝑖, 𝑗) randomly. Then check whether (11) is met.

Step 2.4. If (11) ismet, replace𝑚 with𝑚 and then go to Step 3.
Otherwise, repeat Step 2.3 until allmodes of activity (𝑖, 𝑗)have
been iterated.

Step 3 (calculate the initial personal best and global best). For
𝑙 = 1, 2, . . . , 𝐿, compute the fitness value of each particle 𝑙
based on (19) and identify the personal best of each particle
and the global best in the swarm, where 𝑃1

𝑙
(0) = 𝑋

1

𝑙
(0) and

𝑃
2

𝑙
(0) = 𝑋

2

𝑙
(0). Then proceed to the next iteration 1.

4.3.2. Updating and Schematic Procedure for CP-Based HPSO

Step 1 (velocity and position updating). For each particle 𝑙 in
the particle swarm, the updating mechanism proposed in the
combinatorial PSO [37] is used to update the velocity𝑉1

𝑙
(𝜏−1)

and position 𝑋1

𝑙
(𝜏 − 1). At the same time, update and adjust

position 𝑋2

𝑙
(𝜏 − 1) and velocity 𝑉2

𝑙
(𝜏 − 1) of the 𝑙th particle

using the priority-based PSO (i.e., (15) and (16)).

Step 2 (adjustment). The updated particle positions and
velocities must be subject to corresponding limits, respec-
tively. Otherwise, they can be adjusted as follows. (1) For
𝑋

1

𝑙
(𝜏), adjust it to avoid nonrenewable resource infeasibility

as shown in Step 2 above. (2) If 𝑥2
𝑙ℎ
(𝜏) > 1, then 𝑥2

𝑙ℎ
(𝜏) = 1;

else if 𝑥2
𝑙ℎ
(𝜏 + 1) < 0, then 𝑥2

𝑙ℎ
(𝜏) = 0. (3) Similarly, if

V2
𝑙ℎ
(𝜏) > 1, then V2

𝑙ℎ
(𝜏) = 1; else if V2

𝑙ℎ
(𝜏 + 1) < −1, then
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Figure 5: Detailed information of hydropower construction project𝑋.

V2
𝑙ℎ
(𝜏) = −1. After updating and adjustment, the new position

𝑋
𝑙
(𝜏) = [𝑋

1

𝑙
(𝜏), 𝑋

2

𝑙
(𝜏)] is determined.

Step 3 (particle transformation). For each particle 𝑙 (𝑙 =

1, 2, . . . , 𝐿), the assignment of modes to activities is deter-
mined according to the new position 𝑋1

𝑙
(𝜏) in the 𝜏th gen-

eration. The new position𝑋2

𝑙
(𝜏) is transformed to the sched-

uling of all activities using theHSGS based on the assignment
of modes to activities.

Step 4 (particle evaluation). First calculate the fitness value
Fitness (𝑃

𝑙
(𝜏)) of the particle 𝑙 (𝑙 = 1, . . . , 𝐿) in accordance

with the new position 𝑋
𝑙
(𝜏). Then update the personal best

of particle 𝑙 using the standard PSO: if Fitness (𝑋
𝑙
(𝜏)) <

Fitness (𝑃
𝑙
(𝜏 − 1)), update 𝑃

𝑙
(𝜏) = 𝑋

𝑙
(𝜏); otherwise, 𝑃

𝑙
(𝜏) =

𝑃
𝑙
(𝜏 − 1). Search for the particle with the minimum fitness

value and update the global best: update 𝐺(𝜏) = 𝑃
𝑙
(𝜏), if

Fitness(𝑃
𝑙
(𝜏)) < Fitness(𝐺(𝜏)−1). Otherwise,𝐺(𝜏) = 𝐺(𝜏−1).

Step 5 (stopping criteria). If the stopping criterion ismet, that
is, 𝜏 = 𝑇, go to Step 6. Otherwise, 𝜏 = 𝜏 + 1 and return to
Step 1.

Step 6 (decoding). Determine the global best position𝐺 from
the particle swarm; then decode the global best position 𝐺 as
the solution set.

Figures 3 and 4 show the transformation and schematic
procedure for the CP-based HPSO to generate solutions for
MRCMPSP.

5. Practical Application to
a Construction Project

This section gives a practical application for the proposed
MRCMPSP in a large scale water conservancy and hydro-
power construction project.The case construction procedure
contains three projects and two dummy projects (start and
end project). Through the illustrative example, the proposed
approach is validated and the efficiency of the algorithm is
tested.

5.1. Project Description. A large scale hydropower construc-
tion project (project 𝑋), located in the southwest region of
China, is used as a practical case in this paper and is one
of the biggest hydropower projects in China giving rise to
many environmental and economic benefits. It has various
hydraulic structures including river dam, river diversion,
flood discharge structures, and water power generation sys-
tem. The river dam is a concrete double-curvature arch dam
with 278.00 meters high and a dam crest elevation of 610
meters. There are three diversion tunnels on each of the left
and right banks.Theflood discharge structures consist of four
spillway tunnels, seven surface holes, and eight deep holes in
the dam, as well as a water cushion pond. The main power
house, transformer chamber, and tailrace surge tank in the
water power generation system are arranged in parallel. The
underground powerhouse has 18 hydroelectric generating
sets with a 12,600MW of installed capacity. This paper
focuses on the principal part of hydropower construction
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project 𝑋, river diversion construction, concrete double-
curvature arch dam construction, and water power gener-
ation system construction, the details of which are shown in
Figures 5 and 6.

5.2. Data Collection and Processing. To collect the related
data, site investigations and surveys were conducted to
obtain the basic data from both the financial department
and the experienced engineers involved with the con-
struction companies, each basic data is with an interval
(i.e., [𝑙

𝑞
, 𝑟

𝑞
]) with the highest possible value (i.e., 𝑚

𝑞
).

Then, as shown in Section 2.2, the uncertain parameters
are characterized as triangular fuzzy random variables (i.e.,
([𝜉]

𝐿
, 𝜑(𝜔), [𝜉]

𝑅
), where 𝜑(𝜔) ∼ 𝑁(𝜇, 𝜂

2
)) based on the

collected data and statistical methods, and some relevant
data already processed using the above method for the
activities are shown in Table 1. Finally, a new method called
hybrid crisp approach shown in Section 3.1 is used to con-
vert fuzzy random variables to real numbers. Therefore,
all necessary data, including the data converted from the
fuzzy random variables based on 𝜎 = 0.1, 𝛾 = 0.8,
and 𝜆 = 0.5 and some fixed data, are stated in Tables 2, 3, 4,
and 5,amongwhich and for convenience the per-period-avail-
ability𝑅𝜌

𝑟𝑡
of renewable resource is assumed to be constant𝑅𝜌

𝑟
.

5.3. Parameters Selection for CP-Based HPSO. From the
results of the preliminary experim;ents, which were carried
out to observe the behavior of the algorithm at different
parameter settings, and through a comparison of several sets
of parameters, including population size, iteration number,
acceleration constant, initial velocity, and inertia weight, the
most suitable parameters were identified. Table 6 summarizes
some of the parameter values selected for theCP-basedHPSO
in the computational experiments. Note that the population
size determines the evaluation runs, which, in turn, impacts
the optimization cost, and various learning factors 𝑐

𝑝
and 𝑐

𝑔

may lead to small differences in the PSO’s performance [53].
The inertia weight𝑤(𝜏) is set to be varying with the iterations
as shown in (17), and 𝑤(1) = 0.9 and 𝑤(𝑇) = 0.1 are found
to be the most suitable to control the impact of the previous
velocities on the current velocity and influence the trade-
off between the global and local experiences. The parameter
𝛼 is used to imply intensification and diversification, which
induces it to choose the original values or another value.

5.4. Computational Results. To verify the practicality and
efficiency of the optimization method for the MRCMPSP
under a fuzzy random environment presented in this paper,
the CP-based HPSO is conducted and run on MATLAB 7.0.
The computational results, including a satisfactory solution
and the multiobjective values, were obtained based on the
parameter selection shown in Table 7 (i.e., probability and
possibility level, optimistic-pessimistic index, and weights)
and the estimated maximal values of 𝑧

1
, 𝑧

2
, and 𝑧

3
shown in

Table 8. The multiobjective values are listed in Table 8, and a
satisfactory solution containingmode selection and the start-
finish time determination for each activity except the dummy

activities is summarized in detail in Table 9. Figure 7 is a
Gantt chart which shows the results of the CP-based HPSO
for the MRCMPSP at the hydropower construction project
𝑋.

5.5. Sensitivity Alternative Analysis. In this paper, since there
are some undetermined parameters such as the optimistic-
pessimistic index 𝜆, the probability level 𝜎, and possibility
level 𝛾, the weights between the multiple objectives (i.e., 𝜂

1
,

𝜂
2
, and 𝜂

3
), the weights between the project makespan and

project durations (i.e., 𝜆
1
, 𝜆

2
), and the weights between pro-

jects (i.e.,𝜔
1
,𝜔

2
, and𝜔

3
), the data for whichwere provided by

project managers and imply the attitude of project managers,
further research needs to be done to analyze the sensitivity
and advantages compared with other models and algorithms.

5.5.1. Sensitivity Analysis for the Optimistic-Pessimistic Index
and Probability-Possibility Levels. The results above were
obtained based on theMRCMPSPparameter selection shown
in Table 7. As discussed before, there are three uncertain
parameters (i.e., the optimistic-pessimistic index 𝜆, the prob-
ability level 𝜎, and the possibility level 𝛾) when dealing with
fuzzy randomvariables. It can be seen that,under certain opti-
mistic-pessimistic attitudes and probability-possibility levels,
the objective function values are different. To gain further
insight into the parameter selection principles, a sensitivity
analysis was conducted against these parameters based on
the sameweights selected above; Table 10 summarizes the dif-
ferent objective function values with respect to the different
parameters 𝜆, 𝜎, and 𝛾, where 𝜆 = 1 and 𝜆 = 0 are the
pessimistic extreme and optimistic extreme, respectively.
Based on Section 3.1 and Table 10, the conclusions can be
summarized as follows.

(1) For the optimistic-pessimistic 𝜆, when under the
same probability-possibility levels, if 𝜆 rises, the val-
ues stated in Tables 2, 3, and 4 gradually increase, as
do the weighted project makespan, project cost, and
project quality. This indicates that a more optimistic
attitude by the project manager leads to a more
optimistic optimization for theweighted projectmak-
espan and project cost but with a negative change in
the project quality.

(2) For the probability level 𝜎, under the same optimistic-
pessimistic 𝜆 and possibility level 𝛾, when 𝜆 < 0.5,
the bigger 𝜎, the bigger the objective function values;
when 𝜆 > 0.5, the bigger 𝜎, the smaller the objective
function values; when 𝜆 = 0.5, the change of 𝜎 has no
effect on the objective function values.

(3) For the possibility level 𝛾, under the same optimistic-
pessimistic 𝜆 and probability level 𝜎, when 𝜆 < 0.5,
the bigger 𝛾, the smaller the objective function values;
when 𝜆 > 0.5, the bigger 𝛾, the bigger the objective
function values; when 𝜆 = 0.5, the change of 𝛾
depends on the characteristics of the fuzzy random
variables themselves.

These results are quite useful andmay serve as a reference
for decision makers and, in fact, it would be their choice to



The Scientific World Journal 13

Initial
pouring

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

11

11

11

12

12

12

13

13

13

14

14

14

15

15

15

16

16

16

17

17

18

Upper excavation

Lower excavation

Bottom excavation

Adit
excavation

Foor
concrete lining

Sidewall
concrete lining

Vaulted
concrete lining

Diversion tunnel grouting

Installation of
metal structures

Import and export
cofferdam demolition

Adit
closure

River
closure

Upstream
cofferdam

Downstream
cofferdam

Diversion
tunnel closure

Diversion tunnel
reconstruction

Concrete pouring
replacement

Abutment excavation

Access tunnel
construction

Cable machine
platform excavation

Cofferdam cut-off
wall construction

Foundation
pit drainage

Foundation pit
excavation and

processing

Water cushion
pond excavation

Foundation consolidation grouting

Dam joint grouting
Medium
pouring

Later
pouring

Curtain grouting
Structures installation

Arch
closure

grouting

Table hole
gate hoist

installation

Cleaning
up work

Spillway tunnel
excavation

Ventilation
holes excavate

Surge chamber excavation

Building
crown excavate

Building
crown lining

Plant-media
excavation

Main transformer
room excavate

High-pressure pipeline excavation

Tailrace tunnel excavation

Tunnel
support

A concrete
pouring

High-pressure
pipeline

installation

excavation

Crane installation

Embedded
parts

installation

Two
concrete
pouring

Unit
installation

S1 T1

T2S2S T

T3S3

Concrete double-curvature arch dam construction

Water power generation system

River diversion construction

Plant-lower

Figure 6: Detailed information of hydropower construction project𝑋.

Table 1: Detailed information of each activity in the river diversion construction project.

No. of
activity Mode Nonrenewable resources Renewable resources Quality index Crashed duration

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑟 = 1 𝑟 = 2

𝑆 1 0 0 0 0 0 0 0

1
1 (10.2, 𝜑, 17.6) (4.4, 𝜑, 6.2) (16.5, 𝜑, 19.1) (4.2, 𝜑, 5.6) (5.2, 𝜑, 5.8) (9.2, 𝜑, 9.7) (2.5, 𝜑, 4.9)

𝜑 ∼ 𝑁(13.8, 2.3
2
) 𝜑 ∼ 𝑁(5.5, 0.6

2
) 𝜑 ∼ 𝑁(17.7, 1.6

2
) 𝜑 ∼ 𝑁(4.3, 0.7

2
) 𝜑 ∼ 𝑁(5.5, 0.5

2
) 𝜑 ∼ 𝑁(9.4, 1.3

2
) 𝜑 ∼ 𝑁(3.3, 1.0

2
)

2 (8.5, 𝜑, 13.7) (5.3, 𝜑, 7.6) (14.1, 𝜑, 17.4) (3.6, 𝜑, 4.7) (3.6, 𝜑, 5.7) (8.8, 𝜑, 9.3) (2.8, 𝜑, 5.7)

𝜑 ∼ 𝑁(10.9, 3.6
2
) 𝜑 ∼ 𝑁(6.2, 0.8

2
) 𝜑 ∼ 𝑁(15.8, 2.0

2
) 𝜑 ∼ 𝑁(4.1, 0.8

2
) 𝜑 ∼ 𝑁(4.3, 0.8

2
) 𝜑 ∼ 𝑁(9.0, 1.7

2
) 𝜑 ∼ 𝑁(3.9, 1.1

2
)

2
1 (35.5, 𝜑, 38.7) (12.8, 𝜑, 17.3) (23.3, 𝜑, 26.5) (8.3, 𝜑, 11.5) (6.2, 𝜑, 8.4) (9.4, 𝜑, 9.7) (9.8, 𝜑, 14.7)

𝜑 ∼ 𝑁(37.1, 3.0
2
) 𝜑 ∼ 𝑁(15.6, 2.0

2
) 𝜑 ∼ 𝑁(25.1, 2.1

2
) 𝜑 ∼ 𝑁(9.6, 1.2

2
) 𝜑 ∼ 𝑁(7.3, 1.0

2
) 𝜑 ∼ 𝑁(9.5, 1.8

2
) 𝜑 ∼ 𝑁(12.6, 2.0

2
)

2 (31.3, 𝜑, 36.5) (10.7, 𝜑, 13.5) (25.2, 𝜑, 29.1) (6.3, 𝜑, 8.0) (6.5, 𝜑, 7.2) (8.9, 𝜑, 9.5) (11.0, 𝜑, 14.3)

𝜑 ∼ 𝑁(33.2, 2.5
2
) 𝜑 ∼ 𝑁(12.6, 2.3

2
) 𝜑 ∼ 𝑁(27.4, 2.1

2
) 𝜑 ∼ 𝑁(7.5, 1.1

2
) 𝜑 ∼ 𝑁(6.8, 1.0

2
) 𝜑 ∼ 𝑁(9.1, 1.6

2
) 𝜑 ∼ 𝑁(12.0, 2.2

2
)

...

16
1 (32.3, 𝜑, 35.5) (22.6, 𝜑, 27.3) (26.2, 𝜑, 32.5) (7.2, 𝜑, 9.3) (5.2, 𝜑, 7.6) (9.5, 𝜑, 9.8) (5.5, 𝜑, 8.3)

𝜑 ∼ 𝑁(33.6, 2.0
2
) 𝜑 ∼ 𝑁(24.7, 2.1

2
) 𝜑 ∼ 𝑁(28.8, 1.7

2
) 𝜑 ∼ 𝑁(8.1, 1.0

2
) 𝜑 ∼ 𝑁(6.3, 1.1

2
) 𝜑 ∼ 𝑁(9.6, 1.3

2
) 𝜑 ∼ 𝑁(6.9, 1.6

2
)

2 (28.4, 𝜑, 31.5) (23.3, 𝜑, 27.6) (24.2, 𝜑, 27.4) (6.5, 𝜑, 8.7) (4.1, 𝜑, 6.5) (8.9, 𝜑, 9.3) (7.2, 𝜑, 9.0)

𝜑 ∼ 𝑁(29.9, 2.1
2
) 𝜑 ∼ 𝑁(25.4, 1.8

2
) 𝜑 ∼ 𝑁(25.6, 1.8

2
) 𝜑 ∼ 𝑁(7.3, 1.2

2
) 𝜑 ∼ 𝑁(5.4, 0.7

2
) 𝜑 ∼ 𝑁(9.1, 1.2

2
) 𝜑 ∼ 𝑁(8.2, 1.3

2
)

𝑇 1 0 0 0 0 0 0 0
No. of
activity Normal duration Unit indirect cost Unit crashing cost Fixed direct cost Earned value Predecessors

𝑆 0 0 0 0 0

1 (5.2, 𝜑, 6.6) (20.7, 𝜑, 23.0) (15.2, 𝜑, 17.4) 39.5 87.6

𝜑 ∼ 𝑁(5.9, 1.2
2
) 𝜑 ∼ 𝑁(21.3, 2.1

2
) 𝜑 ∼ 𝑁(16.1, 3.6

2
)

2 (13.0, 𝜑, 16.5) (22.6, 𝜑, 25.5) (26.8, 𝜑, 30.8) 85.6 123.7 1

𝜑 ∼ 𝑁(14.9, 2.3
2
) 𝜑 ∼ 𝑁(24.3, 2.0

2
) 𝜑 ∼ 𝑁(28.3, 3.2

2
)

...

16 (8.2, 𝜑, 10.6) (16.3, 𝜑, 19.7) (36.8, 𝜑, 39.2) 46.2 123.1 13, 14

𝜑 ∼ 𝑁(9.5, 1.5
2
) 𝜑 ∼ 𝑁(18.2, 2.1

2
) 𝜑 ∼ 𝑁(37.9, 2.9

2
)

𝑇 0 0 0 0 0
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Table 2: Detailed information of each activity in the river diversion construction project.

(1, 𝑗) 𝑀
1𝑗

𝑟
𝑚

1𝑗𝑘
𝑟
𝑚

1𝑗𝑟

𝑞
𝑚

1𝑗

𝑑
𝑚

1𝑗
𝑑
1𝑗

𝑐
1𝑗

𝑘
1𝑗

𝐶
1𝑗

𝐸𝑉
1𝑗

𝑃
1𝑗𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑟 = 1 𝑟 = 2

(104) (104) (104) (103) (102) (102) (102) (106) (106) (106)
𝑆 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 13.86 5.38 17.76 4.66 5.50 9.43 3.54 5.90 21.63 16.22 39.5 87.6 S
2 11.02 6.35 15.77 4.13 4.51 9.03 4.11

2 1 37.10 15.27 24.98 9.78 7.30 9.53 12.39 14.81 24.15 28.60 85.6 123.7 1
2 33.62 12.30 27.25 7.29 6.83 9.16 13.07

3
1 40.20 21.56 30.00 10.15 7.86 9.81 16.46 19.33 27.82 36.53 98.2 165.8 2
2 43.52 18.90 28.13 9.30 8.61 9.42 18.05
3 46.69 17.71 27.52 8.16 8.13 9.05 18.52

4 1 27.78 10.65 20.14 7.12 6.73 9.65 7.96 9.15 18.84 39.77 65.3 116.5 3

5
1 16.02 35.68 82.36 7.81 8.20 9.60 37.11 41.86 10.30 35.64 132.6 213.4 4
2 13.15 32.35 75.73 7.26 6.79 8.95 39.14
3 12.84 32.35 79.10 6.79 7.68 9.26 39.65

6 1 24.25 87.36 12.14 7.71 8.72 9.84 10.80 14.85 18.30 20.18 121.7 176.4 4
2 27.15 83.90 11.12 6.35 7.50 9.06 13.63

7
1 34.38 97.42 17.83 8.65 9.00 9.35 15.10 19.38 23.25 31.83 148.2 234.5 6
2 28.16 93.93 15.25 7.01 7.28 8.92 17.61
3 30.92 91.84 14.10 7.70 7.80 9.13 16.28

8 1 20.15 60.20 10.62 7.65 7.34 9.40 9.91 12.74 17.20 23.62 105.3 167.8 7
2 22.86 63.25 8.79 6.57 6.83 9.63 10.86

9 1 0 0 0 12.85 7.15 9.52 14.76 18.16 18.25 31.85 135.6 191.2 4
2 0 0 0 10.45 5.75 9.01 16.11

10 1 0 0 0 11.42 7.78 9.52 5.84 8.68 18.14 20.18 48.7 105.7 9
2 0 0 0 9.57 7.23 8.79 7.15

11 1 17.28 5.86 8.30 4.17 3.92 9.37 3.48 4.61 10.24 28.25 26.4 94.3 5, 8, 10

12
1 79.45 9.05 25.31 7.37 6.28 9.56 7.05 10.46 23.20 31.66 86.3 155.2 11
2 75.93 8.25 27.19 6.52 5.12 9.05 8.14
3 82.78 7.84 30.58 6.16 5.40 9.73 9.20

13 1 179.36 22.21 65.85 11.83 9.15 9.87 14.25 18.75 26.70 39.15 83.7 215.1 12
2 172.72 20.06 69.63 9.45 8.81 9.32 16.11

14 1 171.74 20.15 52.16 11.46 9.85 9.64 13.28 17.12 25.74 36.57 80.5 198.3 12
2 163.27 17.61 55.81 10.03 8.13 9.43 15.50

15 1 39.75 8.08 18.62 6.50 5.73 9.70 6.02 7.86 12.54 25.62 52.5 118.3 13, 14

16 1 33.78 24.85 29.13 8.19 6.36 9.63 6.90 9.44 18.08 37.96 46.2 123.1 13, 14
2 29.93 25.43 25.72 7.48 5.34 9.10 8.14

𝑇 1 0 0 0 0 0 0 0 0 0 0 0 0 15, 16

identify an appropriate set of parameter values to optimize
the decisionmaking process. Project managers would be able
to fine-tune these parameters to obtain different solutions.
These three parameters are provided by the project managers
and are interpreted according to the real world problem.

5.5.2. Sensitivity Analysis for the Weights of Objective Func-
tions. From the discussion above, it can be seen that a differ-
ence in the weights leads to a difference in the objective func-
tion values. The results are shown in Table 11 with respect to
the different weights, the optimistic-pessimistic index 𝜆 =

0.5, the probability level 𝜎 = 0.1, and the possibility level 𝛾 =
0.8.These comparative results demonstrate that the difference

in the solutions using different weights is not very large,
because the weights reflect the importance of each objective
from the view of project managers. Therefore, the results
become graduallyworsewith an increase in the importance of
the objective function𝑓

𝑤
. However, in a real situation, project

managers would control the weights within a reasonable
range and they would be interpreted according to the real
world problem.

5.5.3. Model Comparison in Different Environments. To indi-
cate and highlight the superiority of the use of the fuzzy ran-
dom variables for the mathematical model (14) in this paper,
additional computational work was done using the proposed
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Table 3: Detailed information of each activity in the concrete double-curvature arch dam construction project.

(2, 𝑗) 𝑀
2𝑗

𝑟
𝑚

2𝑗𝑘
𝑟
𝑚

2𝑗𝑟

𝑞
𝑚

2𝑗

𝑑
𝑚

2𝑗
𝑑
2𝑗

𝑐
2𝑗

𝑘
2𝑗

𝐶
2𝑗

𝐸𝑉
2𝑗

𝑃
2𝑗𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑟 = 1 𝑟 = 2

(104) (104) (104) (103) (102) (102) (102) (106) (106) (106)
𝑆 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 18.03 35.74 26.15 5.24 5.02 9.61 8.03 11.05 16.33 28.35 43.5 118.5 𝑆

2 16.47 38.38 23.43 4.50 4.15 9.21 8.85

2
1 62.78 69.84 38.06 13.65 10.50 9.50 35.40 41.15 28.20 30.12 164.2 216.7 𝑆

2 62.25 66.41 34.18 11.31 9.02 8.86 37.15
3 60.83 68.15 35.46 10.73 10.14 9.05 38.32

3 1 27.16 42.52 37.60 8.26 9.84 9.38 18.41 22.17 26.35 27.21 76.4 172.5 𝑆

2 25.37 46.15 34.28 7.52 8.05 8.79 20.56

4 1 44.13 51.10 29.85 12.46 10.53 9.22 24.15 28.70 22.76 36.81 65.3 189.8 𝑆

2 41.35 52.56 27.18 10.62 9.06 9.73 26.37

5 1 46.45 28.60 26.73 9.16 8.75 9.74 26.15 31.04 16.72 28.53 84.5 208.6 1, 2, 3, 4
2 49.74 25.67 20.16 8.02 7.31 9.28 28.67

6 1 0 0 0 5.62 3.28 9.75 6.37 7.82 10.51 23.45 31.4 105.7 1, 2, 3, 4

7 1 23.26 38.36 14.32 8.03 4.79 9.50 13.45 18.02 18.16 35.61 78.7 165.8 6
2 28.14 35.52 10.56 7.00 3.56 9.07 14.69

8 1 20.50 17.82 27.45 6.80 8.27 9.60 10.27 12.84 15.14 21.74 65.7 108.3 6
2 23.51 20.73 21.38 6.02 8.16 9.15 11.04

9
1 18.15 37.25 97.22 8.36 6.46 9.61 46.38 52.26 16.90 27.14 176.5 216.2 5, 7, 8
2 16.57 38.31 93.28 6.25 5.58 8.90 49.36
3 15.04 35.68 94.13 7.10 7.49 9.29 48.50

10 1 12.62 49.55 15.74 10.74 12.65 9.71 12.39 17.55 25.00 28.60 123.5 189.7 5, 7, 8
2 10.41 46.92 13.58 9.66 10.83 9.27 15.58

11 1 13.65 30.52 65.47 7.72 5.35 9.58 38.41 43.18 12.72 15.30 115.2 178.5 10
2 12.08 27.15 62.75 5.39 4.80 9.23 41.24

12
1 34.52 123.66 35.55 10.84 11.20 9.85 28.33 33.76 29.53 28.02 256.4 315.6 10
2 36.18 120.17 33.27 9.74 10.58 9.20 30.46
3 32.45 115.36 30.59 10.52 9.16 8.89 32.30

13 1 15.48 51.35 18.66 9.92 11.06 9.55 8.48 11.38 33.09 38.65 90.3 182.7 12
2 16.73 48.08 16.25 8.14 9.60 9.13 10.05

14 1 16.35 33.74 70.50 6.31 5.08 9.67 30.27 33.13 13.26 11.12 121.3 223.4 10
2 16.35 31.06 66.75 5.42 4.74 9.11 31.86

15 1 0 0 0 9.85 6.30 9.81 31.26 34.59 17.56 27.84 113.6 206.5 10
2 0 0 0 8.72 6.86 9.43 32.39

16 1 8.25 13.58 39.16 8.68 7.65 9.74 8.14 8.90 14.25 27.66 86.2 137.5 9, 11, 13, 14, 15
17 1 0 0 0 8.53 8.06 9.78 9.20 10.06 20.17 52.25 76.1 115.7 16
18 1 0 0 0 10.86 4.15 9.54 4.60 5.18 12.10 27.64 35.3 93.0 17
T 1 0 0 0 0 0 0 0 0 0 0 0 0 18

CP-based HPSO to solve the MRCMPSP under another two
environments (i.e., a determined environment and a fuzzy
environment). In order to guarantee a fair comparison, the
related parameters in the MRCMPSP were selected in the
following way. Denote the fuzzy random variables as ̃𝜉 =

([𝜉]
𝐿
, 𝜑(𝜔), [𝜉]

𝑅
), where 𝜑(𝜔) ∼ 𝑁(𝜇, 𝜂2). Since the variance

of 𝜑(𝜔) was sufficiently small, and the expectation value 𝜇
essentially reflected the most possible value over time, it was
reasonable to select ([𝜉]

𝐿
, 𝜇, [𝜉]

𝑅
) and 𝜇 as the fuzzy param-

eter and the certain parameter for a fuzzy environment and

a determined environment, respectively.Thus theMRCMPSP
models under different environments were formulated and
solved using the CP-based HPSO. The computational results
obtained based on theMRCMPSPweight selection are shown
in Table 12.

By comparing the fitness value of the three objectives
and the aggregated objective, the results for the discussed
two MRCMPSP types are not better than those for the fuzzy
random model, which highlight the superiority of using the
fuzzy randomvariables in theMRCMPSPmodel in this paper
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Table 4: Detailed information of each activity in the water power generation system project.

(3, 𝑗) 𝑀
3𝑗

𝑟
𝑚

3𝑗𝑘
𝑟
𝑚

3𝑗𝑟

𝑞
𝑚

3𝑗

𝑑
𝑚

3𝑗
𝑑
3𝑗

𝑐
3𝑗

𝑘
3𝑗

𝐶
3𝑗

𝐸𝑉
3𝑗

𝑃
3𝑗𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑟 = 1 𝑟 = 2

(104) (104) (104) (103) (102) (102) (102) (106) (106) (106)
𝑆 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 25.22 40.20 32.72 9.75 8.88 9.46 18.41 21.57 24.16 19.50 78.6 162.3 𝑆

2 22.19 42.85 30.16 8.66 7.04 9.11 19.84
2 1 16.30 28.45 21.36 8.63 5.82 9.59 8.32 10.67 20.58 42.14 62.5 145.7 𝑆

3 1 32.53 26.55 38.16 9.73 9.65 9.60 16.14 18.70 18.91 35.34 93.7 194.8 1, 2
2 35.74 24.03 35.28 8.65 8.72 9.18 17.70

4 1 28.65 35.62 25.82 8.36 8.37 9.15 11.37 14.72 22.45 30.61 66.8 156.5 1, 2
2 26.49 39.25 23.51 7.48 7.16 8.73 13.45

5 1 39.70 38.32 27.85 7.37 4.55 9.72 15.04 18.57 18.65 23.50 102.3 215.2 1, 2
2 33.17 35.27 30.15 5.73 4.14 9.38 16.78

6 1 17.52 14.75 15.94 6.50 5.78 9.82 7.26 8.51 20.76 32.00 89.6 138.6 1, 2
7 1 14.39 47.52 10.25 7.13 6.57 9.64 8.67 10.02 28.10 37.43 95.7 150.8 6

8 1 46.48 36.83 33.13 10.63 8.73 9.60 17.70 20.92 27.64 21.75 118.6 209.5 7
2 41.35 40.00 30.56 9.81 8.27 9.00 19.14

9
1 58.95 40.72 36.35 11.07 8.57 9.14 20.18 24.70 27.69 20.15 124.7 217.0 7
2 53.21 38.46 37.62 9.72 8.25 9.53 21.71
3 56.10 34.97 32.54 8.56 8.25 8.74 23.16

10 1 4.13 8.05 7.22 8.30 5.16 9.75 6.37 8.34 27.48 56.53 92.4 110.5 3, 5, 8, 9

11 1 24.72 18.43 18.15 10.46 8.02 9.55 9.38 13.52 18.29 21.75 96.3 149.4 4, 10
2 27.11 16.85 15.66 8.35 7.16 9.21 12.84

12 1 12.26 45.63 3.28 8.80 6.84 9.35 8.14 11.13 27.55 20.18 77.5 176.3 11
2 15.65 40.87 2.66 7.47 6.07 9.58 9.72

13
1 20.37 56.50 8.75 9.83 8.41 9.28 15.23 19.12 24.68 30.35 131.1 245.9 12
2 18.15 59.12 7.60 8.77 7.54 9.50 13.98
3 22.09 52.74 7.06 8.25 6.88 8.83 16.75

14 1 0 0 0 8.83 7.62 9.75 4.24 5.73 18.36 38.22 69.2 106.5 13

15 1 5.27 4.30 7.32 9.57 7.25 9.64 6.36 8.72 24.65 16.73 83.7 124.6 13
2 4.15 3.71 6.25 8.34 6.38 9.12 7.28

16 1 13.15 26.52 4.36 9.66 7.16 9.18 6.20 8.39 24.52 37.37 78.8 136.7 15
2 10.64 28.11 3.56 9.07 6.52 9.43 7.41

17 1 16.58 10.29 21.58 16.62 6.48 9.73 4.96 7.83 43.18 53.26 137.4 231.5 14, 16
2 15.14 8.65 22.71 15.18 5.30 9.16 6.29

T 1 0 0 0 0 0 0 0 0 0 0 0 0 17

Table 5: Some fixed data in hydropower construction project𝑋.

𝑇 𝐵 𝑅
𝜐

1
𝑅

𝜐

2
𝑅

𝜐

3
𝑅

𝜌

1
𝑅

𝜌

2

(102 hour) (108 RMB) (104 m3) (104 m3) (104 t) (103) (102)
200.64 248.98 1476.83 1516.46 1254.71 41.00 36.00

Table 6: Parameters selection for the proposed CP-based HPSO.

Population size Iteration number Acceleration constant Inertia weight Parameter
𝐿 𝑇 𝑐

𝑝
𝑐
𝑔

𝑤(1) 𝑤(𝑇) 𝛼

100 150 2 2 0.9 0.1 0.3

Table 7: Parameters selection for MRCMPSP.

𝜎 𝛾 𝜆 𝜂
1

𝜂
2

𝜂
3

𝜆
1

𝜆
2

𝜔
1

𝜔
2

𝜔
3

0.1 0.8 0.5 035 0.35 0.30 0.60 0.40 0.25 0.40 0.35
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Table 8: Results of multiple objectives values using the CP-based HPSO algorithm for MRCMPSP.

𝑧

𝑧
1

𝑧
2

𝑧
3

𝑧
max
1

𝑧
max
2

𝑧
max
3(102 hour) (106 RMB) (102 hour) (106 RMB)

0.3471 170.8878 24180.1635 9.4789 200.6400 24569.6824 9.6241

Table 9: Results of the CP-based HPSO algorithm for MRCMPSP.

𝑖 = 1 𝑖 = 2 𝑖 = 3

𝑗 𝑚

𝑆
𝑖𝑗

𝑑
𝑚

𝑖𝑗
𝐹
𝑖𝑗

𝑗 𝑚

𝑆
𝑖𝑗

𝑑
𝑚

𝑖𝑗
𝐹
𝑖𝑗

𝑗 𝑚

𝑆
𝑖𝑗

𝑑
𝑚

𝑖𝑗
𝐹
𝑖𝑗

(102) (102) (102) (102) (102) (102) (102) (102) (102)
1 1 0 3.54 3.54 1 2 0 8.85 8.85 1 1 0 18.41 18.41
2 1 3.54 12.39 15.93 2 1 18.41 35.40 53.81 2 1 0 8.32 8.32
3 2 15.93 18.05 33.98 3 1 0 18.41 18.41 3 2 34.34 17.70 52.04
4 1 33.98 7.96 41.94 4 2 18.41 26.37 44.78 4 2 79.12 13.45 92.57
5 3 41.94 39.65 81.59 5 2 53.81 28.67 82.48 5 1 74.87 15.04 89.91
6 1 52.04 10.80 62.84 6 1 53.81 6.37 60.18 6 1 18.41 7.26 25.67
7 3 62.84 16.28 79.12 7 2 60.18 14.69 74.87 7 1 25.67 8.67 34.34
8 1 82.48 9.91 92.39 8 1 81.59 10.27 91.86 8 1 44.78 17.70 62.48
9 2 82.66 16.11 98.77 9 3 91.86 48.5 140.36 9 1 62.48 20.18 82.66
10 1 98.77 5.84 104.61 10 1 92.57 12.39 104.96 10 1 89.91 6.37 96.28
11 1 104.61 3.48 108.09 11 1 104.96 38.41 143.37 11 1 96.28 9.38 105.66
12 2 108.09 8.14 116.23 12 1 104.96 28.33 133.29 12 1 105.66 8.14 113.80
13 2 141.77 16.11 157.88 13 1 133.29 8.48 141.77 13 2 140.36 13.98 154.34
14 1 146.19 13.28 159.47 14 1 116.23 30.27 146.50 14 1 157.88 4.24 162.12
15 1 159.47 6.02 165.49 15 2 113.80 32.39 146.19 15 1 154.34 6.36 160.70
16 2 159.47 8.14 167.61 16 1 146.50 8.14 154.64 16 1 160.70 6.20 166.90

17 1 154.64 9.20 163.84 17 1 166.90 4.96 171.86
18 1 163.84 4.60 168.44
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i = 2

i = 3
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Figure 7: Gantt chart showing the results of the CP-based HPSO algorithm for MRCMPSP in hydropower construction project 𝑋.
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Table 10: Sensitivity analysis on optimistic-pessimistic index and probability-possibility levels.

𝜆 Objective 𝜎 = 0.025 𝜎 = 0.05 𝜎 = 0.075 𝜎 = 0.1

𝛾 = 0.7 𝛾 = 0.8 𝛾 = 0.9 𝛾 = 0.7 𝛾 = 0.8 𝛾 = 0.9 𝛾 = 0.7 𝛾 = 0.8 𝛾 = 0.9 𝛾 = 0.7 𝛾 = 0.8 𝛾 = 0.9

0.00 𝑧 0.3269 0.3230 0.3180 0.3321 0.3277 0.3225 0.3373 0.3302 0.3271 0.3415 0.3364 0.3315
0.25 𝑧 0.3408 0.3364 0.3327 0.3437 0.3393 0.3358 0.3462 0.3427 0.3392 0.3485 0.3455 0.3418
0.50 𝑧 0.3502 0.3471 0.3508 0.3502 0.3471 0.3508 0.3502 0.3471 0.3508 0.3502 0.3471 0.3508
0.75 𝑧 0.3603 0.3645 0.3684 0.3572 0.3613 0.3648 0.3550 0.3587 0.3620 0.3531 0.3562 0.3597
1.00 𝑧 0.3710 0.3763 0.3816 0.3685 0.3735 0.3771 0.3663 0.3700 0.3742 0.3637 0.3675 0.3708

Table 11: Sensitivity analysis on the weights selection by project managers.

(𝜂
1
, 𝜂

2
, 𝜂

3
)

Fitness 𝜔
1
= 0.2, 𝜔

2
= 0.4, 𝜔

3
= 0.4 𝜔

1
= 0.25, 𝜔

2
= 0.4, 𝜔

3
= 0.35 𝜔

1
= 0.3, 𝜔

2
= 0.35, 𝜔

3
= 0.35

Value 𝜆
1
= 0.4 𝜆

1
= 0.5 𝜆

1
= 0.6 𝜆

1
= 0.4 𝜆

1
= 0.5 𝜆

1
= 0.6 𝜆

1
= 0.4 𝜆

1
= 0.5 𝜆

1
= 0.6

Function 𝜆
2
= 0.6 𝜆

2
= 0.5 𝜆

2
= 0.4 𝜆

2
= 0.6 𝜆

2
= 0.5 𝜆

2
= 0.4 𝜆

2
= 0.6 𝜆

2
= 0.5 𝜆

2
= 0.4

(0.40, 0.35, 0.25) 𝑧 0.4550 0.4458 0.4378 0.4566 0.4473 0.4389 0.4577 0.4481 0.4393
(0.40, 0.30, 0.30) 𝑧 0.3542 0.3457 0.3393 0.3556 0.3473 0.3405 0.3568 0.3482 0.3409
(0.35, 0.40, 0.25) 𝑧 0.4673 0.4549 0.4445 0.4689 0.4563 0.4456 0.4701 0.4571 0.4460
(0.35, 0.35, 0.30) 𝑧 0.3612 0.3540 0.3460 0.3628 0.3556 0.3471 0.3640 0.3565 0.3475
(0.35, 0.30, 0.35) 𝑧 0.2706 0.2600 0.2476 0.2721 0.2613 0.2487 0.2734 0.2621 0.2491
(0.30, 0.40, 0.30) 𝑧 0.3750 0.3643 0.3528 0.3765 0.3658 0.3537 0.3775 0.3666 0.3542
(0.30, 0.35, 0.35) 𝑧 0.2781 0.2655 0.2543 0.2795 0.2671 0.2553 0.2806 0.2680 0.2557

Table 12: Model comparison in different environments.

Environments Objective function values
𝑧 𝑧

1
(102) 𝑧

2
(106) 𝑧

3

Determined environment 0.3727 192.6145 24316.8100 9.6315
Fuzzy environment 0.3578 176.2357 24205.6548 9.5126
Fuzzy random environment 0.3471 170.8878 24180.1635 9.4789

Table 13: Comparison results between CP-based HPSO and standard PSO.

Algorithm Objective function values Convergence iteration number Computation time (s)
𝑧 𝑧

1
(102) 𝑧

2
(106) 𝑧

3

CP-based HPSO 0.3471 170.8878 24180.1635 9.4789 58 26.3264
Standard PSO 0.3471 170.8878 24180.1635 9.4789 124 57.1683

and also indicate that an MRCMPSP model using fuzzy set
theory has a much better performance than using certain
parameters. The performance also suggests that CP-based
HPSO is an effective and relatively efficient approach for
solving the MRCMPSP model.

5.5.4. Algorithm Evaluation. To carry out comparisons under
similar circumstances, the parameters stated in Table 6 and
the initial velocities for the decision variables in the CP-based
HPSOwere also adopted for the standardPSO.Table 13 shows
the comparison results and the convergence histories of the
two types of PSO based on the parameter selection stated in
Table 7. From these results, it is obvious that CP-based HPSO
has an obvious advantage compared with the standard PSO

when solving the MRCMPSP. The first advantage is that the
CP-based HPSO is more stable than a standard PSO when
searching for the optima. Another advantage is that it is faster
when determining the optima and converges a little faster
than the standard PSO, that is, the CP-basedHPSO needs less
iterations to find the optimal solutions. Thus the CP-based
HPSO displays an improved search performance compared
with the standard PSO under a similar circumstance.

6. Conclusions and Future Research

In this paper, a multiobjective optimal control model was
established to solve a multimode resource-constrained mul-
tiple project scheduling problem (MRCMPSP) in a large
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scale hydropower construction project under a fuzzy random
environment. This is a multiobjective optimization process
for minimizing the weighted project makespan and project
cost andmaximizing the project quality, with decisionmakers
determining suitable project scheduling and mode selection.
While using probability theory is cumbersome and costly,
and fuzzy theory is incapable of dealing with ambiguous and
complex information, triangular fuzzy randomvariableswere
used to characterize the multiple parameter uncertainties
with combinations of both fuzziness and randomness. A
hybrid crisp approach and an expected value operator were
introduced to transform these triangular fuzzy random vari-
ables to real numbers; thus, the expected value model was
derived. Subsequently, to solve the above problem, amultiob-
jective CP-based HPSO algorithm composed of a priority-
based PSO and a combinatorial PSO was developed based
on the particular nature of the model, which was able to
automatically control the particle-updating in the feasible
solution space to find the optimal solution for the expected
value model, where the combinatorial PSO was proposed to
deal with the selection ofmodes to activities, and the priority-
based PSO was proposed to deal with the scheduling of
all activities. Finally, a large scale hydropower construction
project composed of a river diversion construction, a concrete
double-curvature arch dam construction, and a water power
generation system construction was used as a practical appli-
cation example to verify the maneuverability, scientific
nature, advanced nature, and effectiveness of the proposed
research.The results and analysis were presented to highlight
the performance of our optimization method, which was
proven to have the characteristics of generality, reduced cal-
culation time, high velocity, high efficiency, and high preci-
sion compared to the standard PSO algorithm.

It should be noted that our MRCMPSP excepted value
model was formulated with some assumptions, so it may
not represent the precise construction and transportation
environment.With this in mind, an important area for future
research would be the consideration of more restrictions
rather than assumptions. Another area of improvement
would be the activity modes being continuous over crashing
time rather than being discrete. Therefore, more research
needs to be done and evidence gathered in future research to
find solutions to the above problems and to develop a more
efficient heuristic method to derive modified solutions.
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